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ABSTRACT

Projection pursuit algorithms approximate a function of p variables

by a sum of non-linear functions of linear combinations¥, .

n i
(1) f(xl, ...,xp) = izl"gi<ai%x1-+...-Paipxp). /

We develop some approximation theory, give a necessary and sufficient condi-

tion for equality in (1), and discuss non-uniqueness of the reoresentation.
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J. Introduction and Statement of Main Results

We present some mathematical analysis for a class of curve fitting
algorithms labeled "projection pursuit" algorithms by Friedman and Stuetzle
(1981 a, b). These algorithms approximate a general function of p variables

by a sum of non-linear functions of projections:

n
(1.1) £(x,, ...,xp) s 121 gy(ag % +... +aipxp) .

In (1.%), f is a given function and univariate, non-linear functions g
and linear combinations ailx1+ ...4-aipxp are sought so that a reasonable
approximation is attained. Such approximation is computationally feasible
and performs well in examples of non-linear regression with noisy data, high
dimensional density estimation, and multidimensional splines. In addition
to the articles of Friedman and Stuetzle cited above see Friedman and Tukey
(1974), Friedman, Gross and Stuetzle (198]1) for examples and computational
details. Huber (1981 a,b) begins to connect the algorithms to statistical
theory. This note treats the algorithms from the point of view of approxi-

mation theory.

It is easy to show that approximation is always possible.

i
THEOREM 1. Functions of the form ZaieE '§, with o, real, gi a vector of

i
nonnegative integers, and x = (xl, sy xp) are dense in the continuous real

valued functions on [0,1]p under the maximum deviation norm.

Proof. The functions e>'% separate points of [0,1]p and are closed under
multiplication. Finite linear combinations of such functions form a point

separating algebra which is dense because of the Stone-Wierstrass theorem. ®
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THEOREM 2. Functions of the form
i i
Xai cos (2113 *x) + 8i sin (27bd" ¢ x)

are dense in L2[0. 1)P .

Proof. Any function in LZIO, 1]’ can be well approximated by its Fourier
expansion. See Volume 2 of Zygmund (1959) and the survey article by Ash

(1976) for further details and refinements, @&

Sometimes equality is possible in (1.1). For example
1 2 1. _ .2

max(x, y) = -il- |x+y| +%|x-y|

31 %

4
1 3 (x+2y) - %(x +5y) .
3 3

=ttt + Tox-pt - 2
43 2.

In what follows we will focus on conditions for equality in (1.1) ar & method
of determining examples to test, compare, and evaluate algorithms. Consider

first a smooth function of 2 variables of the special form

f(x, y) = g(ax+by) .

Clearly

If £ has the form

n
(1.2) f(x,y) = z 81(3134'1’1?)
i=]




then the differential operator

n n

3 ) 3 2
{ L= I [b 2 _.a _] - Z c, ——
t 1=l i ax i 8y i=0 i axiayn-i

applied to f is identically zero. The next theorem gives a converse. :

THEOREM 3. Let f € ck[O, 1]2 . Suppose that for some real numbers Cos +o*2C s i

n
n k
the operator Z c —2 applied to f is identically zero. If the polyno-
& i i, n-1i E
n i=0 ox dy .
mial Z c 2z has distinct real zeros then (1.2) holds for some (ai’bi) . The .
i=0 E
lines ax + biy are all distinct.

Theorem 3 is proved in Section 2 which also contains a discussion of
techniques for finding directions (81’ bi) given f. Some applications of

Theorem 3 are contained in the following examples.

APPLICATION 1. The functions e and sin xy cannot be written in the form
" -
{1 L g f = 0 implies i
ax dy .
< = 0 and the associated polynomial has complex roots.

(1.1) for any finite n. Indeed, the equation ZIc

APPLICATION 2. Let f(x,y) be a polynomial of degree m. Then

m
f(x,y) = ] g,(a,x+b,y)
Ly BT Py

where each 8 is a polynomial of degree at most m. This follows by elimi-
nating manipulations from Theorem 3. Thus, any polynomial in 2 variables
can be represented exactly. Since polynomials are dense in C[O, 1]2 , this

gives another proof of denseness of projection pursuit approximations.
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APPLICATION 3, Representations of the form (1.1) are not necessarily unique.

For example
2 2
xy = c(ax+by) - c(ax-by)

for any a and b satisfying ab ¥ O, az + b2 =1 with ¢ = 1/4ab.

Writing a = cos 6, b = sin 0, any non-coordinate direction can be chosen
for the quadratic 8 - The second direction is forced as orthogonal to this.
This suggests that substantive interpretation of the linear combinations
(ai, bi) is difficult, For a more ambitious example, consider the function
(Xy)z . This is of 4th degree. Use of Theorem 3 as outlined in Section 2,
shows that (xy)2 cannot be expressed as a sum of n = 3 or fewer terms in

(1.1). Four terms of 4th degree suffice:
(xy)2 = q,(x+b y)4 +a.(x+b y)l' +a.(x+b y)l' +a,(x+b y)l'
1 1 2 2 3 3 4 4 ’

where bl’ bz, b3, b, are chosen as distinct, and satisfying

4

+bb -o.

b,b, + b.b, + b.b +bzb 4 30,

1%z * byb;y + byb, + byb

3

Then Qrs Gyy 0y» a, are determined by

wvhere the sum and product are over j ¥ 1. This clearly defines a three

dimensional family of solutions.
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APPLICATION 4. Even if the directions (‘1’1’ 1) are fixed, the representation

need not be unique. Suppose that n is the smallest integer such that

n
f(x,y) = ] 8,(a,x+by) .

i=1
If also
n
f(x,y) =~ } hy(ax+b,y),
i=1
then

£,() ~h (D) ~p (), 1<i<n

with Py a polynomial of degree at most n - 1. The polynomials p 1 can be
chosen in an arbitrary way subject to the constraint Ip 1 £ 0. In particular,
any n - 1 of the p 4 can be chosen arbitrarily and a final polynomial can be
found to satisfy the constraint. These results all follow easily from Theorem 3;

indeed the operator L, = 1 | b _3___ a _3_] applied to f(x, y) gives
i e j 9x j 9y

(n-1)

b 1

(n-l)(aix+biy) N (b,a,-a,b,) =g

(a,x+b,y) I (b,a,-a,b,).
1 PP i B I 17 Py

i i

The products are non-vanishing because the directions are distinct. It follows
that hi differs from 8 by at most a polynomial of degree n-1, and that an
arbitrary polynomial may be added subject to the constraint.

In the special case n = 2, Theorem 3 was given by Dotson (1968) who
suggests further application to factoring probability demsities and separation
of variables.

The generalization to dimension greater than two is not as neat. We give
the result in 3 dimensions, characterizing functions on [0, 1]3 of the form

n
(1.3) ) ‘1(.11‘1 +a,,x, +313x3) .
i=1




Clearly a smooth function f(xl, xz, x3) is of the form g(x3) if and

only if _3'?:_ f and a—:— f vanish identically., It is equivalent to insist that
1 2
) 3 )
[bl 3x1 + b2 3x2 + b3 —8::3] f vanishes identically for all (bl' bz, b3) in the

plane normal to the Xy axis (so b3-0) . The following theorem generalizes

these considerations. The generalization to p-dimensions is straightforward.

THEOREM 4., Let lIi be n distinct planes in 1R3. Let f € cn[0, 1]3 . Then

f has the form (1.3) if and only if for all bie Il:l .

(1.4) ﬁ{b SR —‘-’-}f=o
i=1 il 3x1 i2 3x2 i3 3x3

Remarks. If ci’di € IIi form a basis, (1.4) holds for all b, € Hi, l<i<n

i

if and only 1f it holds for the 2" cases in which b, runs over possible basis

i
vectors, The case n = 2 in (1.3) is degenerate and may be treated by Theorem 3:
for example, a necessary and sufficient condition for

) 3 9
f(xl, x2,x3) = gl(xl) + gz(xz) is I f and 3:1 axz f vanish identically.

3
We conclude this introduction by relating the above results to Hilbert's
13th problem. In modern notation Hilbert asked if there are genuine multi-
variate functions. Of course, x + y is a function of 2 variables but
Xy = e1°8 x+ logy is a superposition of univariate functions and +.
Kolmogorov and Arnold showed that, in this semse, + is the only function of
2 variables. They constructed 5 monotone functions ¢1: [0, 1] + R, ¢1 €L ipl .

with the following remarkable property: for each f € C[O, 1]2 there 1is a

g € C[0, 1] such that for all (x,y)

n
f(x,y) = 1X1 3[¢1(X) + ‘;' 01(1)] .




Thus ¢1 are a "universal change of variables" which allows exact equality.
A nice discussion of this result and its refinements can be found in Lorentz
(1966, 1980) and Vertushkin (1977). While the functions ¢1 and g are given
in a constructive fashion, it does not seem that this result is used to
approximate functions in an applied context. This is probably because the
functions ¢>i are fairly "wild". For example, it is known that it is not

possible to choose ¢i to be Cl functions, so fixed linear combinations of

x and y are ruled out. Indeed, it is known that there is a polynomial
n E
f(x, y) for which f(x,y) = Z g,(a,x+b,y) 1is not possible with a_, b K
1=1 iti i 1’ 1
chosen independent of f. In the projection pursuit approach to approximation,
a, and b:l are allowed to depend on f and Example 2 shows that now any poly- T
nomial can be written in the required form. Example 1 shows that not all

functions can be s0 expressed.

Acknowledgement. We thank Jerry Friedman, Bob Hulquist, and Winnie Li for

helpful discussions.,




2. Proof and Discussion of Theorems 3 and 4. Let L be the differential

n n
operator: Z c —_ . By hypothesis, the polynomial
i i, n-1

i=Q 9x Jy

n n
i n-i n xy1i

Doexy T2yt I oe(3)
1=0 1 gm0 1Y

splits into distinct linear factors. Thus L can be written as

] )
H[bi 3z~ 34 3y ], with the lines a,x + biy distinct. It must be shown that

i
o
f can be represented as Z gi(aix+b1y) . The proof is by induction on n .
i=1

For n = 1, suppose without real loss that a, $ 0. Then f(x,y) = g(alx+bly)

with g(z) = f( £ ,0) . One way to show this is to fix (x,y) and define

by b b,
h(t) = £ [x+—y - —= yt, ty] . Then h(0) = f[x+—-y, 0] = g(a,x+b.y);
‘1 .1 a1 1 1

0, for 0 £t <£1. The fundamental theorem of

h(l) = £(x,y) and h'(t)
1

calculus gives h(l) = L h' + h(0) . Suppose the result is true for operators

of degree <n - 1. To prove it for degree n, write

n n-1
9 9 ) 9 3 9 -
il-lllbi x %1 ay]f-{illl[bi ax %4 By)}[bn ax % ay]f_ 0.

By the induction hypothesis, there are functions By» l1<1i<n-1 satisfying

3 n-1
(2.1) [bn > % E] f= 1-2-1 8i(a1x+biY) .

A solution f* of (2.1) of the form

* n-1
f (x,y) = Z hi(aix+ biy)
=1

t
is found by choosing hi(t) - (bnai-‘nhi)-l L gi(s)da . This 1is well defined
because the lines are distinct. Now 1 b 2 a 2 (f-f*) Z 0 can be solved
a 9x n dy
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*
explicitly with £ - f (x,y) = hn(anx-l-bny) by the argument for n = 1. It

*
follows that f = f + hn can be written in the required form. =&

Remarks on Explicit Computations. Theorem 3 gives the existence of numbers

n
Cos +++2 such that ch ;—:I_._:_n::l-. (f) = 0. Fixing n + 1 distinct pairs (xi’ yi),
R X dy

calculate and solve the resulting system of equations for ¢

i, n-1
9x 9y (xi. yy)

It is feasible to check 1f the polynomial c0+ sest ann has distinct real roots

using techniques in Chapter 6 of Henrici (1977). Each stage of the procedure is

i

feasible by a finite algorithm. If the procedure fails at any stage, then

equality is impossible. Given feasible co, ooy cn » it may be possible to find

the roots of the associated polynomial. This determines directions (ai, bi) .
In simple examples there is often enough freedom of choice to make deter-

mination of (ai’bi) possible. Consider f(x,y) = xy for n = 2,

2 2 2 2
f of o f 3 f 3 f
H(b —-a~}=bb—-(ba+ba)——+aa——.
=1 i 9x i 9y 172 axz 172 271" 3xdy 172 ayz
2 2 2
Since af -2f. 0, _f = 1; any distinct choice of a, and b, with
ax2 3y2 X3y i i
l:ola2 = —bza1 works. Taking al = b1 =1, a2 = —b2 = 1, we are led to solve

f(x, y) = 81(x+y) + sz(x-y) .

Applying 38; - aa—y to both sides leads to y - x = Zg; (x-y); setting y = 03
2 2
' x x
82(1) -2 8~ + €, - Similarly, gl(x) = -’%— + ¢y and the result is

2 where ¢y + c, = 0 is forced. In general,

n
- ; 3 _, 3¢ . (oD
explicit c, . This determines 8; UP to an essentially free choice of an

-l 2 I IR
xy A(xl-y) +¢:1 4(x V- +c

n - 1 degree polynomial.




In the case of a polynomial f, some additional tricks become available.

: n
For a multinomial xayb let a+b = n; only sums of the form Z ai(x+8 y)n

1=1 3
need be considered. Expanding out and equating coefficients gives

20

This gives n + 1 equations in 2n unknowns. These are linear in a for Bj

n
zai o. zaibi 0 s s ZaiB so e Zaib = 0 .

3

given and may be solved explicitly because the matrix is a Vandemonde with a

well known inverse. See Goutschi (1963).

Proof of Theorem 4. Condition (1.4) is clearly necessary. For sufficiency,

observe first that we may assume that the normals a, to the planes Il 4 Span
a subspace of dimension 3 or higher. If the dimension of this subspace is
two, then the problem reduces to the corresponding problem in IRZ which was
solved in Theorem 3. The proof is by induction on n. For n = 1, the
argument was given in the discussion preceding the theorem. Suppose that the

result has been demonstrated for n -1, For 1i=1,...,n, let b, and ¢y

i
form a basis for Hi . A generic element of IIi can be written as

B:lbi + Y4Cy 0 for Bi’Yi € R. Write the equation (1.4) as

(2.2) [1:-;2 Pi](Pl(f)) =0.
By the induction hypothesis,
n
(2.3) P,f = ! g (a -0 .

i=2

We will now find the general solution to (2.3). To begin, note that P, may

1
be regarded as a 2-parameter family of differential operators depending

linearly on (ﬂl.yl) . It follows that the right side of (2.3) must depend
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¢ Bt A3 ot i "

linearly on (81. Yl) « Write
8y = B18yy Y Y18y,
and
Pif =By ay(aymx) 4y, Ty m .

For this equation to have a solution, a necessary integrability condition

on 311 and g12 must be satisfied. To see this, write

- 2 3 3 A 9 2
51 B1["11 ax;* P12 3%, P13 3x3] * Yl[cu ax, " ©12 3x, " 13 3x3J y

From (2.3) it must be that the following two equations are satisfied:

3 3f n
jzl blj 3;; =A 122 gil(ai * x)
3 n
of
jzl c].j -é"g = 122 312“1 . x) .

i The necessary condition for integrability is

l 9
Zeyy -a—x;-{):gil(ai *x)} = Zblj sg{ Ly, (ay x)}

or
n . n '
(2.4) 1'2.2 (ci- ai)gu(ai- X) = 122(\:1 ~a,)g,,(a ) .

Let Gi be any function of one variable such that G;_ =8 Then

i=2

{B}Zb —a—+Y2c _?)_}{ tf G, (a -x)}
13 ax 1j ox 1484
(2.5) 3 3

n
= 122 B[b1 . ai]gil(a1 *x) + Y[cl . ai]gu(ai '+ x) .




Integrating (2.4) gives, for some constant k:

n n
] cyra g . (a*x)= } b ca g . (a-x) +k.
L, c17 8 oLy P17 181208

Substituting this in (2.5) gives

n
122 by -8y [By,(a; - ) + v8y,(a - 0] + vk

n
If k = 0, then a particular solution to P,f = Ig, would be f = ) (bi' a,) s

g=2 1

Note we can assume that b1 is chosen such that l:o1 a, $0 forall i=2,...,n.

The next job is to show how to modify G:l to take care of non-zero k. Let

Fi(xl’ X, x3) - Gi(a1 *x) + Gi e *x

where 61 and e 3) will be chosen later. Then,

T PP IR
{ZBb 2 ¢ ye —a-}{ZF (x5 x5 X,)}
13 axj 13 axj 171" 72° 73

a n
=Ly a0 [88y,(a1 00 +vagp(ay - 0T + vk + | 6y {obyceg 4 ocpregf

Set 61-0 for 1 > 3. Choose e, such that ez-bl-o and e2-c1#0.

Set 62 = -k/chjezj . Then, the function
'Z‘ 1
f(x,, x,, X,) = =—— G,(a, *x) + §,e, * x
e R e T Vit i 2%2

1
solution, we proceed to describe a general solution of Plf = g by studying

n
solves the equation P.f = J Bgyy + Y8,, - Having obtained a particular
i=2

the general solution of the hosogeneous equation Plf = 0, But, it is straight-

forward that a general solution of the homogeneous equation is of the form




g(ai * x) where a, -bl - a -b2 = 0. Thus the general solution of (2.3) is

n
1
(2.6) I —— 6. (a, *x) +5,e °x+g(a, *x) .
4op DAy id 272 i

In (2.6) e, vas chosen so % bl =0 ¢ e,*¢ . Now we use the hypothesis

that three of the vecotrs a;, say a,, a,, a, are linearly independent, and

express e, as a linear combination of these three vectors. It follows that

the general solution can be expressed in the form

n
] H,(a, *x) as required. ®
g1 11
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